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1. Introduction

In this paper we consider lattice realization of Electroweak theory (without fermions). The

phase diagram of the correspondent lattice model contains physical Higgs phase, where

scalar field is condensed and gauge bosons Z and W acquire their masses. This physical

phase is bounded by the phase transition surface. Crossing this surface one leaves the

physical phase and enters the phase of the lattice theory that has nothing to do with the

conventional continuum Electroweak theory. In the physical phase of the theory the Elec-

troweak symmetry is broken spontaneously while in the unphysical phase the Electroweak

symmetry is not broken. Thus the unphysical phase is called also symmetric phase while

the Higgs phase is called broken phase of the theory.

In lattice theory the ultraviolet cutoff is finite and is equal to the inverse lattice spacing:

Λ = 1
a , where a is the lattice spacing. Alternatively, the Ultraviolet cutoff in lattice theory

can be defined as the momentum Λ̃ = π
a (see, for example, [1]). Later we shall imply the

first definition of the cutoff.

The physical scale can be fixed, for example, using the value of the Z-boson mass

Mphys
Z ∼ 90 GeV. Therefore the lattice spacing is evaluated to be a ∼ [90GeV]−1MZ ,

where MZ is the Z boson mass in lattice units. Within the physical phase of the theory

the lines of constant physics (LCP) are defined that correspond to constant renormalized

physical couplings (the fine structure constant α, the Weinberg angle θW , and Higgs mass

to Z-boson mass ratio η = MH/MZ). The points on LCP are parametrized by the lattice

spacing. In general, there are two possibilities: either LCP correspondent to realistic
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values of α, θW , and η, remains inside the given phase when a is decreased, or it crosses

the boundary at a certain value of a = ac. In the second case Λc = 1
ac

is the maximal

possible ultraviolet cutoff in the lattice Electroweak theory.

We investigate numerically lattice realization of Weinberg-Salam model. Also we ana-

lyze existing data of the numerical investigation of the SU(2) Gauge - Higgs model. We find

the indications that there exists the maximal possible ultraviolet cutoff Λc. Our estimate

is Λc = 1
ac

= 430 ± 40 Gev. (With the definition Λ̃c = π
ac

we arrive at the value of the

cutoff Λ̃c = 430π ∼ 1.3 Tev.) It is important to compare this result with the limitations

on the Ultraviolet Cutoff, that come from the perturbation theory.

First, from the point of view of perturbation theory the energy scale 1 TeV appears

in the Hierarchy problem [2]. Namely, the mass parameter µ2 for the scalar field receives

a quadratically divergent contribution in one loop. Therefore, the initial mass parameter

(µ2 = −λcv
2, where v is the vacuum average of the scalar field) should be set to infinity in

such a way that the renormalized mass µ2
R remains negative and finite. This is the content

of the so-called fine tuning. It is commonly believed that this fine tuning is not natural [2]

and, therefore, one should set up the finite ultraviolet cutoff Λ. From the requirement that

the one-loop contribution to µ2 is less than 10|µ2
R| one derives that Λ ∼ 1 TeV. However,

strictly speaking, the possibility that the mentioned fine tuning takes place is not excluded.

In the perturbation theory there is also more solid limitation on the Ultraviolet cutoff.

It appears as a consequence of the triviality problem, which is related to Landau pole in

scalar field self coupling λ and in the fine structure constant α. The Landau pole in fine

structure constant is related to the fermion loops and, therefore, has no direct connection

with our lattice result (we neglect dynamical fermions in our consideration). Due to the

Landau pole the renormalized λ is zero, and the only way to keep it equal to its measured

value is to impose the limitation on the cutoff. That’s why the Electroweak theory is

usually thought of as a finite cutoff theory. For small Higgs masses (less than about 350

Gev) the correspondent energy scale calculated within the perturbation theory is much

larger, than 1 Tev. The consideration, however, becomes nontrivial when λ → ∞, and

the perturbation expansion in λ cannot be used. In this case Higgs mass approaches its

absolute upper bound,1 and both triviality and Hierarchy scales approach each other.

2. Lattice Weinberg-Salam model

Below we use the following lattice variables:

1. The gauge field U = (U, θ), where

U =

(

U11 U12

−[U12]∗ [U11]∗

)

∈ SU(2), eiθ ∈ U(1), (2.1)

realized as link variables.

1According to the previous investigations of the SU(2) Gauge - Higgs model this upper bound cannot

exceed 10MW .
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2. A scalar doublet

Φα, α = 1, 2. (2.2)

The action can be considered in the following form

S = β
∑

plaquettes

((

1 − 1

2
Tr Up

)

+
1

tg2θW
(1 − cos θp)

)

+

−γ
∑

xy

Re(Φ+Uxye
iθxyΦ) +

∑

x

(

|Φx|2 + λ(|Φx|2 − 1)2
)

, (2.3)

where the plaquette variables are defined as Up = UxyUyzU
∗
wzU

∗
xw, and θp = θxy + θyz −

θwz − θxw for the plaquette composed of the vertices x, y, z, w. Here λ is the scalar self

coupling, and γ = 2κ, where κ corresponds to the constant used in the investigations of

the SU(2) gauge Higgs model. θW is the Weinberg angle. Bare fine structure constant α

is expressed through β and θW as

α =
tg2θW

πβ(1 + tg2θW )
. (2.4)

The renormalized Weinberg angle is to be calculated through the ratio of the lattice

masses: cos θW = MW /MZ . The renormalized fine structure constant can be extracted

through the potential for the infinitely heavy external charged particles.

Lattice model with the action (2.3) was investigated numerically in the number of

papers. Most of the papers dealt with the SU(2) Gauge-Higgs model, i.e. with the case

θW = π/2. The system with arbitrary θW has been investigated numerically at unphysically

large α in [3]. Here we list some of the papers that consider SU(2) Gauge - Higgs model

at realistic values of β around β = 8: [4 – 17]. Implying that the hypercharge field is to be

included into consideration perturbatively, one can use expression (2.4) with sin2θW = 0.23

and estimate α = 1
110 that is not far from its physical value α(MW ) = 1

128 .

3. Numerical investigation of the model at θW = π/6

Here we report the results of our numerical investigation of the system (2.3) for θW = π
6

(corresponds to sin2θW = 0.25), λ → ∞, and renormalized α around α(MW ) = 1
128 . From

the very beginning we fix the unitary gauge Φ1 = const., Φ2 = 0.

The following variables are considered as creating a Z boson and a W

boson, respectively:

Zxy = Zµ
x = sin [ArgU11

xy + θxy],

Wxy = W µ
x = U12

xye−iθxy . (3.1)

Here, µ represents the direction (xy).

After fixing the unitary gauge the electromagnetic U(1) symmetry remains:

Uxy → g†xUxygy,

θxy → θxy − αy/2 + αx/2, (3.2)

– 3 –
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where gx = diag(eiαx/2, e−iαx/2). There exists a U(1) lattice gauge field, which is defined as

Axy = Aµ
x = [−ArgU11

xy + θxy]mod 2π (3.3)

that transforms as Axy → Axy − αy + αx. The field W transforms as Wxy → Wxye
−iαx .

The W boson field is charged with respect to the U(1) symmetry. Therefore we fix

the lattice Landau gauge in order to investigate the W boson propagator. The lattice

Landau gauge is fixed via minimizing (with respect to the U(1) gauge transformations) the

following functional:

F =
∑

xy

(1 − cos(Axy)). (3.4)

Then we extract the mass of the W boson from the correlator

1

N6

∑

x̄,ȳ

〈

∑

µ

W µ
x (W µ

y )†
〉

∼ e−MW |x0−y0| + e−MW (L−|x0−y0|) (3.5)

Here the summation
∑

x̄,ȳ is over the three “space” components of the four-vectors x and y

while x0, y0 denote their “time” components. N is the lattice length in ”space” direction.

L is the lattice length in the ”time” direction.

The Z-boson mass is calculated using the correlator

1

N6

∑

x̄,ȳ

〈

∑

µ

Zµ
x Zµ

y

〉

∼ e−MZ |x0−y0| + e−MZ(L−|x0−y0|) (3.6)

It is worth mentioning, that in the Z-boson channel many photon state also exists.

The mass of the correspondent state on the finite lattice we used is, however, larger than

that of the Z-boson itself. For example, on the lattice 163 × 24 the minimal mass of the

3-photon state is M3γ = 22π
16 + 4π

16 ∼ 1.5. Moreover, from the point of view of perturbation

theory this state appears in the correlator (3.6) through the virtual loop and is suppressed

by the factor α3.

In order to evaluate the mass of the Higgs boson we use the correlator [18]:

∑

x̄,ȳ

〈HxHy〉 ∼ e−MH |x0−y0| + e−MH(L−|x0−y0|) + const, (3.7)

and the following operators that create Higgs bosons:

Hx
V =

∑

y

Re(U11
xyeiθxy); Hx

W =
∑

y

|Wxy|2; Hx
Z =

∑

y

Z2
xy (3.8)

Here Hx
V ,Hx

W ,Hx
Z are defined at the site x, the sum

∑

y is over its neighboring sites y.

We perform the calculation of renormalized fine structure constant αR using the poten-

tial for infinitely heavy external fermions. We consider Wilson loops for the right-handed

external leptons:

WR
lept(l) = 〈Re Π(xy)∈le

2iθxy〉. (3.9)
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Here l denotes a closed contour on the lattice. We consider the following quantity con-

structed from the rectangular Wilson loop of size r × t:

V(r) = log lim
t→∞

W(r × t)

W(r × (t + 1))
. (3.10)

Due to exchange by virtual photons at large enough distances we expect the appearance

of the Coulomb interaction

V(r) = −αR

r
+ const. (3.11)

It should be mentioned here, that in order to extract the renormalized value of α one may

apply to V the fit obtained using the Coulomb interaction in momentum space. The lattice

Fourier transform then gives

V(r) = −αR U(r) + const,

U(r) =
π

N3

∑

p̄ 6=0

eip3r

sin2p1/2 + sin2p2/2 + sin2p3/2
(3.12)

Here N is the lattice size, pi = 2π
L ki, ki = 0, . . . , L − 1. On large enough lattices at r ≪ L

both definitions approach each other. For example, for L = 75, r ∈ [1, 10] the linear fit to

the dependence U(r) on 1
r gives U(r) ∼ 0.97/r − 0.18. However, on the lattices of sizes

we used the difference is important. Say, on the lattice 163 the fit is U(r) ∼ 0.71/r − 0.4

(for r ∈ [1, 5]). Thus, the values of the renormalized αR extracted from (3.11) and (3.12)

are essentially different from each other. Any of the two ways, (3.11) or (3.12), may

be considered as the definition of the renormalized α on the finite lattice. And there is

no particular reason to prefer the potential defined using the lattice Fourier transform

of the Coulomb law in momentum space. Actually, our study shows that the single 1/r

fit approximates V much better. Therefore, we used it to extract αR. This should be

compared with the results of [17], where for similar reasons the single e−µr/r fit (instead of

the lattice Yukawa fit) was used in order to determine the renormalized coupling constant

in the SU(2) Gauge Higgs model.

In figure 1 we present the phase diagram for the lattice model in the β - γ plane.

Mainly we used lattices of sizes 164. Some results were checked on the lattices of size 244.

For the evaluation of masses we used lattices 63 × 12, 83 × 16, 123 × 24, and 163 × 24.

At small values of β this system was considered in [3]. The dotted vertical line on the

left side of the figure represents the deconfinement phase transition corresponding to the

U(1) constituents of the model. The continuous line corresponds to the transition between

the broken and the symmetric phases of the model. Physical Higgs phase of the system is

situated in the right upper corner of figure 1.

The dotted vertical line on the right-hand side of the diagram represents the line, where

the renormalized α (calculated on the lattice 164) is constant and is close to its physical

value 1
128 . Actually, on the tree level this would be the straight line β = tg2θW

πα(1+tg2θW )
∼ 10.

According to our numerical results on the lattice 164 at γ = 1 and β close to β = 15 the

renormalized αR is equal to 1
128±1 . In addition we checked our results on the renormalized
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Figure 1: The phase diagram of the lattice model at fixed λ in the (β, γ)-plane.

αR on the lattice 123 × 24. We have found on this lattice the same value of αR (within

the statistical errors) as on the lattice 164. So, we conclude that the renormalized fine

structure constant calculated using our choice of the fit for the potential is not sensitive

to the change of the lattice size. The given line of constant renormalized αR is almost the

straight line that is defined by the two points: [γ = 1;β = 15] and [γ = 1.5;β = 14.81].

The accuracy of the calculation of αR is around 1%.

The position of the phase transition lines on this figure was localized, mainly, us-

ing methods developed in [19, 20]. In particular, we considered the behavior of various

monopole-like topological defects that exist in the given model. (For the definition of the

correspondent monopole currents, their density and percolation probability, see [19].) The

densities and percolation probabilities of the constructed monopole currents appear to be

very sensitive to the phase transitions. Say, the monopole currents constructed of the field

θ feel the deconfinement phase transition corresponding to the U(1) constituents of the

model. Their worldlines are extracted from the hypercharge field θ in the following way:

jY =
1

2π
∗d([d2θ]mod2π) (3.13)

(Here we used the notations of differential forms on the lattice. For their definition see [19,

20] and references therein.) The monopole density is defined as

ρ =

〈∑

links |jlink|
4L × N3

〉

, (3.14)

where N is the lattice size in ”space” direction, L is the lattice size in ”time” direction

in lattice units. (We often used asymmetric lattices for the calculation of the variables

related to the monopole properties.) The density of hypercharge monopoles is nonzero

within the confinement-like phase and falls sharply within the deconfinement phase. The

average action of the model appears to be inhomogeneous in the small vicinity of the phase

transition line.

The monopole currents constructed of the field A (in a way similar to (3.13))

feel the transition between the broken and the symmetric phases of the model: jA =

– 6 –
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Figure 2: Susceptibility χ = 〈H2

Z
〉 − 〈HZ〉2 at β = 15 on the lattice 83 × 16.

1
2π

∗d([dA]mod2π). Their density drops in the physical Higgs phase. In order to investigate

topological defects extracted from the Z-boson field we use the definition of the Z-boson

creation operator different from (3.1):

Z
′

xy = [ArgU11
xy + θxy]mod 2π, (3.15)

Then we investigate monopole currents constructed of the field Z
′

: jZ = 1
2π

∗d([dZ
′

]mod2π).

Their density also drops in the physical Higgs phase.

In order to localize the position of this transition we also use the susceptibility χ =

〈H2
Z〉 − 〈HZ〉2. In figure 2 the dependence of the susceptibility on γ on the lattice 83 × 16

is represented at fixed β = 15. HZ is composed of Z field according to expression (3.8).

We also check our data represented on figure 2 using the lattices 123 × 24 and 164. We do

not find any dependence of χ on the lattice size.

It can be seen that the maximum of the susceptibility composed of HZ corresponds

to the values of γ around γ = 0.92. We found that the percolation probabilities of both

monopole currents extracted from the fields A and Z
′

vanish at the same value of γ. In

summary, we evaluate the position of the transition between the two phases at β = 15 as

γc = 0.92 ± 0.02.

It is worth mentioning that according to our numerical results monopoles extracted

from the fields A and Z
′

are condensed in the unphysical symmetric phase of the model.

The correspondent field configurations carry magnetic charge and dominate in the vacuum

of the symmetric phase. Therefore, this phase indeed has nothing to do with the real

continuum physics.

The behavior of the densities of the considered topological objects is in general very

similar to that of the SU(2) × U(1)/Z2 model investigated in [19]. It is worth mentioning

that the line of the transition between the broken and the symmetric phases of the model

can actually be a crossover line. In general we evaluate error bars in determination of the

phase transition points given in figure 1 as ∆γ = ±0.05;∆β = ±0.05 although in some

regions of the phase diagram the accuracy is better.

– 7 –
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Figure 3: MZ as a function of γ.

For the calculation of the W-boson and Z-boson masses we used lattices of sizes 63×12,

83×16, 123×24, and 163×24. It has been found that the W -boson mass contains an artificial

dependence on the lattice size. We suppose, that this dependence is due to the photon

cloud surrounding the W -boson. The energy of this cloud is related to the renormalization

of the fine structure constant. It has been shown above that the definition of renormalized

αR is ambiguous on the finite lattice. The difference between the two possible definitions

(via the single 1/r fit and via the lattice Coulomb potential) depends strongly on the lattice

size. On the other hand, the Z-boson correlator does not possess this artificial dependence

on the lattice size. Therefore, we use the Z-boson mass in order to fix Ultraviolet cutoff in

the model.

Careful investigation of the ZZ correlator at the point γ = 1, β = 15 shows that MZ

does not depend on the lattice size. The value of mass MZ = 0.22 ± 0.01 at γ = 1, β = 15

was obtained on four different lattices of sizes 63 × 12, 83 × 16, 123 × 24, and 163 × 24. The

dependence of the Z-boson mass on γ at β = 15 on the lattice 83 × 24 together with the

linear fit are given in figure 3. The linear fit is MZ = 0.009 + 0.217γ.

Basing on this data we conclude that the Z-boson mass in lattice units in the physical

Higgs phase of the theory cannot exceed the value 0.21 ± 0.01 for β = 15 as we locate the

transition between the two phases at γ = 0.92 ± 0.02. At the point [β = 15, γ = 0.92] the

value of renormalized αR does not deviate much from the value calculated on the line αR =
1

128 . Actually, the deviation is within 1%. Thus we expect the maximal possible Ultraviolet

cutoff at realistic value of the fine structure constant cannot exceed Λc = 430 ± 40 Gev.2

So, the Ultraviolet cutoff grows when γ is decreased, its maximal value within the physical

Higgs phase is achieved at the transition point and cannot exceed Λc = 1
ac

= 430± 40 Gev

(or, Λ̃c = π
ac

∼ 1.35 Tev).

2We also like to notice here that in the previously investigated SU(2) Gauge - Higgs model it was found

that the gauge boson mass in lattice units grows when one moves into the physical Higgs phase starting

from the transition point (when the gauge coupling β is fixed [4 – 17].)
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As for the Higgs boson mass, due to the insufficient statistics we cannot extract

MH from our data with reasonable accuracy. According to our (very rough) estimate

at β = 15, γ ∈ [0.8; 1.2] we have MH/MZ ∼ 9 ± 2. This estimate is in agreement with the

investigation of the SU(2) Gauge Higgs model [15 – 17] performed near the transition point

for the London limit of the Higgs potential and realistic β. Actually, as in [15] we made

our estimate based on the consideration of the correlator for small space-time separation

(≤ 3). It was found in [17] that at larger distances the second mass parameter close to

2MW contributes to the correlator. In [17] in order to evaluate Higgs boson mass in this

situation this second value was considered as the mass of the bound state of the two gauge

bosons, and only the first mass in the given channel was interpreted as the Higgs boson

mass.

4. The tree level estimates of lattice quantities

At finite λ the line of constant renormalized α is not a line of constant physics, because the

mass of the Higgs boson depends on the position on this line. Thus, in order to investigate

the line of constant physics one should vary λ together with γ to keep the ratio of lattice

masses MH/MW constant.

In order to obtain the tree level estimates let us rewrite the lattice action in an appro-

priate way. Namely, we define the scalar field Φ̃ =
√

γ
2Φ. We have:

S = β
∑

plaquettes

((

1 − 1

2
Tr Up

)

+
1

tg2θW
(1 − cos θp)

)

+

+
∑

xy

|Φ̃x − Uxye
iθxyΦ̃y|2 +

∑

x

(

µ2|Φ̃x|2 + λ̃|Φ̃x|4
)

+ ω, (4.1)

where µ2 = −2(4 + (2λ− 1)/γ), λ̃ = 4 λ
γ2 , and ω = λV . Here V = L4 is the lattice volume,

and L is the lattice size.

For negative µ2 we fix Unitary gauge Φ̃2 = 0, Im Φ̃1 = 0, and introduce the vacuum

value of Φ̃: v = |µ|√
2λ̃

. We also introduce the scalar field σ instead of Φ̃: Φ̃1 = v + σ. We

denote Vxy = (U11
xyeiθxy − 1), and obtain:

S = β
∑

plaquettes

((

1 − 1

2
Tr Up

)

+
1

tg2θW
(1 − cos θp)

)

+

+
∑

xy

((σx − σy)
2 + |Vxy|2v2) +

∑

x

2|µ|2σ2
x

+
∑

xy

(

(σ2
y + 2vσy)|Vxy|2 − 2(σx − σy)ReVxy(σy + v)

)

+

+
∑

x

λ̃σ2
x(σ

2
x + 4vσx) + ω̃, (4.2)

where ω̃ = ω − λ̃v4V .

– 9 –
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Now we easily derive the tree level estimates:

MH =
√

2|µ| = 2
√

4 + (2λ − 1)/γ;

MW =
√

2
v√
β

=

√

γ(4γ + 2λ − 1)

2λβ
;

MW = cosθW MZ

MH/MW =
√

8λβ/γ2;

Λ =

√

2λβ

γ(4γ + 2λ − 1)
[80GeV]; (4.3)

the fine structure constant is given by the formula (2.4) and does not depend on λ and

γ. From (4.3) we learn that at the tree level LCP on the phase diagram corresponds to

fixed β = tg2θW

πα(1+tg2θW )
∼ 10 and η = MH/MW , and is given by the equation λ(γ) = η2

8β γ2.

Actually, numerical research shows that the real LCP stays not far from this tree level

estimate (for λ ≪ 1).

The important case is λ = ∞, where the tree level estimates give

MH = ∞;

MW =

√

γ

β
;

MZ =

√

γ

β
cos−1θW ;

Λ =

√

β

γ
[80GeV]; (4.4)

In the SU(2) gauge Higgs model for the small values of λ ≪ 0.1 the tree level estimate

for MH/MW gives values that differ from the renormalized ratio by about 20%[14]. The

tree level estimate for the ultraviolet cutoff is about 310 GeV at λ = ∞, γ = 1, β = 15

that is not far from the numerical result given in the previous section. In the SU(2) Gauge

Higgs model at λ = ∞ the critical γc = 0.63 for β = 8 [17]. At this point the tree level

estimate gives Λ = 285 Gev while the direct measurements give Λ ∈ [270; 470] Gev for

values of γ ∈ [0.64; 0.95] [17]. The investigations of the SU(2) Gauge Higgs model showed

that a consideration of finite λ does not change much the estimate for the gauge boson

mass. However, at finite λ and values of γ close to the phase-transition point the tree level

formula does not work at all.

The tree level estimate for the critical γ is γc = (1 − 2λ)/4. At small λ this formula

gives values that are close to the ones obtained by the numerical simulations [15 – 17]. In

particular, γc → 0.25 (κc → 0.125) at λ ≪ 1. However, this formula clearly does not work

for λ > 1/2. From [18, 15 – 17] we know that the critical coupling in the SU(2) Gauge

Higgs model is about 2 − 4 times smaller for λ = 0 than for λ = ∞.

– 10 –
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5. Analysis of the existing data

From the previous research we know that the phase diagram in the β - γ plane of the

lattice SU(2) Gauge-Higgs for any fixed λ resembles the phase diagram represented in the

figure 1. The only difference is that in the SU(2) Gauge-Higgs model the confinement-

deconfinement phase transition corresponding to the U(1) constituents of the model is

absent. The direct measurement of the renormalized coupling βR shows [4 – 17] that the

line of constant renormalized coupling constant (with the value close to the experimental

one) intersects the phase transition line. Also we know from the direct measurements of

MW in the SU(2) Gauge-Higgs model that the ultraviolet cutoff is increased when one is

moving along this line from the physical Higgs phase to symmetric phase. It is also worth

mentioning that the line of the transition between the broken and the symmetric phases of

the model can actually be a crossover line. .

According to (4.3) the W-boson mass in lattice units vanishes at the critical γc =

(1 − 2λ)/4. This means that the tree level estimate predicts the appearance of an infinite

ultraviolet cutoff at the transition point for finite λ. At infinite λ the tree level estimate

gives nonzero values of lattice MW for any nonzero γ. Our numerical investigation of

SU(2)⊗U(1) model (at infinite λ) and previous calculations in the SU(2) Gauge Higgs model

(both at finite λ and at λ = ∞) showed that for the considered lattice sizes renormalized

masses do not vanish and the transition is either of the first order or a crossover. (Actually,

the situation, when the cutoff tends to infinity at the position of the transition point means

that there is a second order phase transition.) The dependence on the lattice sizes for the

SU(2) Gauge Higgs model was investigated, for example, in [13]. Namely, for β = 8,

λ ∼ 0.00116, where MH ∼ MW , the correlation lengths were evaluated at the critical value

κc = γc/2. For different lattice sizes (from 123 × 28 to 183 × 36) no change in correlation

length was observed [13].

In the table we summarize the data on the ultraviolet cutoff 1
a achieved in selected

lattice studies of the SU(2) Gauge Higgs model. (a is the lattice spacing.) Everywhere β

is around β ∼ 8 and the renormalized fine structure constant is around α ∼ 1/110.

Among the papers listed in this table there are results of both finite temperature and

zero temperature studies. However, in the case when the finite temperature simulations are

performed the authors either refer to the analogous simulations of the zero temperature

theory or performed such simulations directly. This is related to the fact that the only

way to set up the scale in the theory and, correspondingly, to calculate the temperature,

is to deal with the zero temperature model on the symmetric lattice. To be explicit, one

should calculate lattice spacing a on the symmetric lattice via calculation of the gauge

boson mass. Then on the asymmetric lattice (with the same values of couplings as on

the symmetric one) the value of temperature is 1/(Na) , where N is the lattice size in

time direction. The ultraviolet cutoffs used in the mentioned lattice studies of the finite

temperature theory actually correspond to the zero temperature models, where these values

have been calculated.

Strictly speaking, the above described picture works at infinite (or, high enough) lattice

size. If T → 0, then one should use lattice with the time extent NT = 1
Ta → ∞. That’s
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Reference Ultraviolet Cutoff 1
a (GeV) MH (GeV)

[4] 140 (space direction) 570 (time direction) 80

[5] 280 (time direction) 80

[6] 280 34

[7] 110 16

[8] 90 (space direction) 350 (time direction) 34

[9] 280 48

[10] 140 35

[11] 280 20 , 50

[12] 190 50

[13] 260 57 - 85

[14] 200 - 300 47 - 108

[15] 400 480

[16] 330 - 470 280 - 720

[17] 250 - 470 720 (λ = ∞)

Table 1: Reported values of the cutoff in lattice Electroweak theory.

why the value of lattice spacing calculated on the ideal infinite symmetric lattice is to be

used in the finite temperature study at small enough temperatures. Our analysis shows,

that the smallest value of a is around [400Gev]−1 (see section 7 of the present paper). Our

study shows also, that MZ does not depend on the lattice size L for L > 5. Thus for the

time extent of the asymmetric lattice NT > 5 corresponding to T < 80 Gev the value of a

calculated on the symmetric lattice can be applied. However, already at the temperatures

of the order of 400 Gev it is necessary to use lattice with the time extent N = 1
Ta ∼ 1.

Therefore, it is obvious, that at T > 80 Gev the lattice theory suffers from lattice artifacts.

At the temperatures larger, than 400 Gev, it cannot be applied in principle.

In principle, the effect of lattice artifacts could be partially corrected if the effective

value of lattice spacing is used that is different from that of calculated on the symmetric

lattice. If so, the effective upper bound on the Ultraviolet cutoff Λc = 1
ac

can be considered

as depending on temperature. However, the discussion of such a dependence is out of the

scope of the present paper.

6. Triviality problem and the hierarchy scale

The emergence of the triviality problem in lattice theory was considered in a number of

papers (see, for example, [16, 17]). According to the common view on the problem the

renormalized λ tends to zero when the ultraviolet cutoff tends to infinity. Thus at the

infinite value of the cutoff Higgs sector becomes trivial (noninteracting). As a result the

renormalized ratio MH/MW should tend to zero when the cutoff tends to infinity while the

other renormalized couplings (α and θW ) remain constant. However, at finite ultraviolet

cutoff this ratio may remain far from zero. In the situation, when the measured Higgs
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boson mass is larger than the inverse lattice spacing, we cannot consider the Higgs boson

as a real quantum state existing in the theory. (We do not think, however, that in this

situation the theory looses sense at all.) Thus, when MH becomes of the order of the

cutoff, it approaches its absolute upper bound. This gives the so-called triviality upper

bound on the Higgs mass allowed in lattice Electroweak theory. According to the previous

investigation of the SU(2) Gauge-Higgs model this triviality bound is MH/MW < 10 (see,

for example, [16, 17]).

Basing on the perturbative treatment of the triviality problem one expects that in

the lattice theory this problem appears as follows. Each Line of Constant Physics (corre-

spondent to fixed renormalized α, θW , and MH/MW ) must be ended at a certain value of

the cutoff related to the triviality problem. Basing on the perturbation theory one may

expect, that this value of the cutoff for MH < 350 Gev is larger, than 10 Tev (see, for

example, [22] and references therein). If MH approaches its absolute upper bound M c
H ,

then the perturbation theory predicts decrease of the maximal Ultraviolet cutoff Λt related

to the triviality problem.

The Hierarchy scale is around 1 Tev. So, if the mentioned above picture is valid,

moving along the Line of Constant Physics at MH < 350 Gev we would encounter the

Hierarchy scale much earlier, than the triviality problem. However, as it will be explained

in the next section, there are indications that the Line of Constant Physics always stops

at the point, where the value of the ultraviolet cutoff Λc is at the Hierarchy scale. This

means that within the lattice theory the emergence of the triviality problem is more com-

plicated, than it was usually thought. We suppose, that both Landau pole in scalar self

coupling, and the Hierarchy problem in perturbation theory, as well as the appearance of

the maximal cutoff Λc ∼ 1 Tev in the lattice theory may actually be the manifestations of

the same phenomenon.

It is worth mentioning, that if MH → M c
H , then perturbative Λt is decreased and

approaches the value of the Higgs mass. So, Λt and Λc approach each other (see figure 2

of [22]).

7. The maximal value of the cutoff

On the lattice the bare mass parameter in lattice units is µ2 = −2(4 + (2λ − 1)/γ). In the

lattice theory we reach the point where the renormalized µ2
R becomes positive, if we are

moving along the line of constant α, while the ultraviolet cutoff Λ is increased. This is the

point of a phase transition between the broken and the symmetric phases of the model.

The content of the fine tuning in continuum approach is that we set up the initial

parameter µ2 in such a way that the quadratically divergent contribution to µ2
R is cancelled.

This means that −µ2 should be as large as const × Λ2. In the perturbation theory, in

principle, for any given Λ we can choose an appropriate value of µ2. Therefore the naive

guess would be that on the lattice in order to increase the cutoff the value of bare lattice

λ should be increased (then −µ2 = 2(4 + (2λ − 1)/γ) is increased). In our simulations

we used the maximal possible value of λ, i.e. λ = ∞. And we have found that the value

of the cutoff cannot exceed its maximal value Λc. At infinite λ the tree level estimate
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gives Λtree
c =

√

β
γc

[80Gev]−1. If we substitute γc ∼ 1 and β ∼ 15 then the tree level

estimate gives Λtree
c ∼ 310 Gev. Our calculations3 gave us value Λc = 1

ac
∼ 430 ± 40 for

sin2θW = 0.25, αR ∼ 1
128 . (Here ac is the value of lattice spacing.) In the SU(2) Gauge-

Higgs model the maximal reported value of Λ = 1
a is 470 Gev. It is worth mentioning

here that the weak coupling expansion in lattice theory [21] gives the prediction that the

maximal possible ultraviolet cutoff is achieved in lattice Electroweak theory at infinite λ.

The value 470 Gev was obtained when the U(1) constituent of the model was neglected.

Moreover, the fine structure constant in the correspondent research was around 1
110 . In our

research the U(1) subgroup of the Electroweak gauge group is taken into account and αR

is around its physical value 1
128 . That’s why we feel it appropriate to estimate the maximal

cutoff in the lattice Electroweak theory (with dynamical fermions neglected) equal to the

value calculated in our work.

Thus basing on our data and on the data of the previous numerical research we expect

that Λc remains finite at the transition point for any λ. If so, then in the lattice theory there

is no way to avoid entering the wrong phase while increasing Λ with any choice of initial

parameters of the model. However, the possibility still remains that the second order

phase transition between the symmetric and the broken phases may appear at selected

exceptional values of the coupling constants. Then at these points the Ultraviolet cutoff

may become infinite.

8. Conclusions and discussion

To conclude, in this paper we reported the results of numerical investigation of the lat-

tice Weinberg-Salam model at infinite bare scalar self coupling. We also analyzed re-

sults of the previous lattice study of SU(2) Gauge-Higgs model. Both our results and

the previous data indicate that the values of lattice spacings smaller, than a critical value

ac, cannot be achieved in principle. Basing on the existing data we expect, that ac is

about [430 ± 40Gev]−1.

Our study shows that the susceptibility represented in figure 2 does not depend on

the lattice size. This can be considered as the indication, that the transition between the

Higgs phase and the symmetric phase of the model is the crossover. We also have found,

that the percolation of monopole-like topological defects appears as an order parameter for

this transition. That’s why we conclude, that the given transition may belong to the class

of the transitions of the so-called Kertesz type (see, for example, [23]).

The important question is how the minimal value ac of the lattice spacing depends on

the details of lattice regularization. In particular, one may suppose that it could become

possible to find out the improved lattice action that allows to decrease ac. However, this

question is out of the scope of the present paper.

3In the previous numerical investigations of lattice Electroweak theory at realistic values of β the U(1)

constituent of the model was not taken into account. It was implied that the hypercharge field is to be taken

into account using perturbation expansion. Thus possible nonperturbative effects were ignored. However,

we see that nonperturbative effects are important for evaluation of maximal possible Ultraviolet cutoff in

lattice Weinberg-Salam model (at least, at λ → ∞).
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It is the common point of view, that due to the triviality problem the Weinberg - Salam

model should be considered as a finite cutoff theory. The main result of our paper is that

the value of the maximal cutoff in lattice Electroweak theory is essentially smaller, than

it was thought previously. Namely, we suppose, that it is about Λc = 1
ac

∼ 430 ± 40 Gev

(or, Λ̃c = π
ac

∼ 1.3 Tev). Although we neglect dynamical fermions and consider the scalar

field potential in London limit, we suppose that the investigation of the theory with the

finite value of scalar self coupling and with dynamical fermions included will not change

our estimate crucially. Thus we expect, that the Weinberg-Salam model can be used only

at the energies E ≪ 1 Tev. At the same time at the energies approaching 1 Tev the other

theory should be used.4

The appearance of the upper bound on the cutoff in lattice Electroweak theory may

have important consequences in finite temperature theory. In particular, one of the sce-

narios of baryon asymmetry appearance is related to Electroweak sphalerons. However,

the correspondent energy scale 10 Tev is far above Λc. Moreover, the lattice Electroweak

theory cannot be applied5 at T > Λc ∼ 430 Gev, because time extent of the lattice is

evaluated as N ∼ 1
aT .

This work was partly supported by RFBR grants 08-02-00661, and 07-02-00237, RFBR-

DFG grant 06-02-04010, by Grant for leading scientific schools 679.2008.2, by Federal

Program of the Russian Ministry of Industry, Science and Technology No 40.052.1.1.1112.
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